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NOMENCLATURE
Symbol ¥eaning
a,b material axes
E material stiffness tecasor
CU cohesion
D material compliance tensor
d incremental operator
£ elastic .nodulus
e strain tensor
G shear modulus
a | gravitational constant
h distance below surface of earth
i,i.k,1 ) indices, subscripts
4 | dispersion coefficient
n, n+1 load increments
P cumulative probability
p ~ random number (0,1)
T matrix transpose, superscript
t.. k. transformation matrices
xX,¥Y global axes
- vector of thermal expansion
coefficients
) e mean orientation of joint set
N 2 local orientation of fracture
\- f engineering shear strain
LT temperature increment




Symbol

la

o) [+
H' v

[u2

Meaning
defined in Eq. 5
reduction factor in Egs. 2] and 25
friction cceflicient
Poisson's ratio
material densitv
stress tensor

horizontal and vertical in-situ
stress components

shear stress

deviation of local fracture
angle from mean direction
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INTRODUCTIOLN:

The underground burial of nuclear waste has so far been
Proposed for both soft rock, exclusively salt, and hard rock,
Specifically basalt, granite, shale and tuff. This gives rise
to two different geotechnical pProblems. The division ig made
because the mechanicaltbehavior of salt is characterizag by
time-dependent Creep deformation, while the mechanical behavior
of hard rccxks is generally assumed to be elastic-plastic.
Additionally, salt is thought of ag 2@ continuous rock mass
while hargd rocks., which usually contain numerous faults and
intersecting 5oint sets, are considered to be discontinuous. A
discontinucus rock mass js descrikad by the Properties of the
fractures ang by the Droperties of the intact rock. For very
nard rocks the mass behavior j3 controlled Primarily by the
discontinuities, and the beha&icr of the intact rock is almost
irrelevant. However, for mocderately hard rocks the jintact rock
characteristicn nay be dominant. In this recort a material
constitutive medel IS presented which takes explicit account of
the ptooerties of both the intact rock ang the fractures. Even
though immediate application jg the analys.. of an underground
nuclear waste repository in harg rock, the constitutive mcdel
is intended to be valid for a variety of Problems, both sStatic

and dynamic, in a regqularly jointed medium,



Large rock masses in the earth's crust are commonly broken
into block structures by fractures that occur in sets of
reqjularly spaced, more or less parallel, planes with a variety
of orientations. These joint sets are formed primarily by flow
banding and cooling in ignecus rocks, and by foliatio:n in
metamorphic rocks. In addition, jointing can result from
up-lift of initially reep~seated rock masses. Major joint
sets can extend for miles, and joint spacing can vary from
centimeters to several meters. Moreover, these features can
occur in lithologic units at depths of several kilometers. 1In
this repnrt, the words fracture and joint are use?
interchangeably to refer to discontinuities that have not
undergone detectable shear displacement. Discontinuities that
do rot occur in reqular sets and/or have undergone observable
shear displacement are called faults or dikes. A complete
description of the structizral geology of joint sets is not

presented here but can pe found in Refs. 1-3.

The nature of the fractures observed in a hard rock mass
deserves special consideration since it dictates the type of
material constitutive moadel w'.ich must be employed for
mechanical modelling. Naturaliy occurring fractures are found
in configurations varying from the closely spaced,
multiply-intersectin® and omnidirectional network shown
schematically in Fig. 1A, to the isolated but well-defined )

discrete fault illustrated in Fig. 1C. The fracture network in

11
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Fig. 1A is typical of the Eleana shale formation at the Nevada
Test Site, for which a granular materials model was found to
accurately predict the rock mass response in a near surface
heater experiment [4). At the other extreme, the discrete.
fault in Fig. 1C is satisfactorily modelled by a slide 1in2,
with the host rock behavior being approximated by classical
elastic-plastic theory. The fractures found to occur most
commonly in hard rocks, however, are those depicted in Fig. 1B;
they consist of one, two, or three intersectinag sets, each set
being defined by a typical fracture length, an average spacing
betweén fractures, and a preferred orientation. In contrast to
the granular material in Fig. XA, the joint sets in Fig. 1B
possess preferred planes of weakness. And, in contrast to the
discrete fault in Fig. 1C, tliey are dispersed throughout the
region of interest and therefore require a continuum
description. It is this typ-Aof fracture system that has
recently attracted special attention in the underground waste

disposal community, and to which this study is addressed.

After obvious initial efforts tc model fractured rock
masses as homogeneous and isotropic, researchers in rock
mechanics began to borrow from the estabiished theories of soil
mechanics. Generalized elastic-plastic theories with
pressure~dependent yield surfaces were presented by Reyes and
Deere {5] and Pariseau, Voight and Dahl [6]. Zienkiewicz (7]

used a linear elastic model with a tension cutoff to

13




approximate the behavior of materials in which loss of cohesion
occurs under tensile loading. Mod2ls for discrete joints or
faults were incorporated into finite-element computer codes by
Goodman, Taylor and Brokke [8] and by Ghaboussi, Wilson and
Isenberg 191, and into houndary element codes by Roberds [10].
These discrete joint eslements are state-of-the-art in the sense
that they attempt to model nonlinear normal and shear
deformacion, dilatancy, and yierlding with a generalized
Mohr-Coulomh theory., Dixon and Mahﬁab {11) were among the
first to report a finite element continuum model for jcinted
rcek masses, hut its applicability was limited to stability
analysis; -post-failure frictional sliprage along pre-existing
joint planes was not considered. Cundall [12) presented a

theory for a continuum divided into a large number of rigid

hlacks whore deformation takes place cnly between mating
surfaces. Gince pocst-failure riqgid body motion could be
modelled using this theory, it has been applird to earth
subsidencé vroblems. Recent advances toward a continuur theory
have *aknn oither the acproach of Singh [13), Morland [14], and
Zienkicwicz and Pande [15], in which fractures are modelled
explicitly in the material stiffness, or the approach reported
in Ref, [16]) in which slip planes are modzlled implicitly in

th2 equation for the vield surface.
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Geological observations and measurements in underground
exploratory tunnels, of surface outcrops, and in drill holes
can provide reasonably accurate informatinn on the orientation
and position of major faults. Similaf field measurement data

i on regular joint sets, however, always exhibit scatter to some
significant extent regardless of the rock type. Joint sets do
not exist as perfectly parallel, planar surfaces. Their
ohservable properties, namely spacing, size and orientation,
can only be interpreted in a statistical manner. Althouch the
major effort has been directed toward analyzing orienta-ion
data, probability distributions for joint size have been
reported by Cruden {17}, and for joint spacing by Snow [18) and
Priest & !ludscn [19). In each caise, the data were well
represented by a lognormal dic:ribution. More recently, a
major effort has bheen undeftaken to quanfify several joint set
characteristics for use in studies cf underground nuclear waaite

disposal in basalt [20] and granite [211.

The assumptinn often made in continuum theories for
regu{arly jointed rock masses is that fractures are everywhere
planar. Zienkiewicz and Pande {15) discuss the possibility of
specifying "random joints” in their finite element code, but
make no attemption to relate the randomness to geologic field
data. For the jointed rock model presented in this report, the
fracture orientation at a point is taken as a sample from a

population distribution which has been decermined from field

R T, i AR 9 e Rl e Oy e
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observations. Probability distributions for joint orientaticn
data are well established, and are presented in this repore cs
the basis fc: specifying joints in the constitutive model. The
assumption of parallel fracture planes is not only physically
unrealistic, but may create an ill-conditinning of the global
material stiffness which would contribute to the modei a deqree

of instability tha: would otherwise not axist.

Fractur~ spacing, like fracture orientation, significantly
affects rock mass behavior and must bhe included in the
constitutive model. If the stress-strain behavior of both the
intact rnck and a single fracture are known individually, then
constructing a constitutive relation for a composite with a
given fracture spacing is'straiqhtforward. This relation is
valid for finite elements with characteristic dimensions large
compared to the fracture spacing. However, if the finite
olement dimensions are small compared to fracture spacing, then
the fractures appear to be 27 :_rete and are generally modelled
by slide lines or discrete joint elements. Both situations are
illustroted in Fig. 2. It beccmes an arduous task, bnth in
manpower and computer time, to model a large nuwber of discrete
faults. 1In the precent model, discrete fractures can be
arbitrarily assigned at finite element inteqration points, and
thus the continuum approximation is maintained. These elements
have the normal and shear mechanical properties of an isolated

joint, but adjacent elements have properties of the intact _
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rock. This is shown in Figq. 2B. A consisten*t formulation for
a large range of joint spacings, with respect to finite element
dimensions, has not been defined at the present time, The
axtension of the present mndel to joint sets with variable
spacingz basnd ~n 1 nrabability distribution, howecer, Lraccoaz
tn thee sare tanner av that far cariabloe erjensations whiten i

described in this paper.

CONSTITUTIVE EQUATIONS FOR AN ELASTIC ORTHOTROPIC BODY

The bons}itutivo equations for an elastic orthotropic body
are well e~stabl;shed and documented in the literature. They
are presented harn, however, hacause it is these equations that
are modified, as shown in the nex:- sectinﬁ, to mndel the
mechanics of jointed rock masses. The equaticns in this
section are, far the most part, taken from Joknson and

Henderson [22] and Jones [231}.

For a linear ~lastic, anisotropic material the

-

stress-strain-temperature constitu*tive rnlationship is given bv

k1 (1)




Consider the two-dimensional axisymmetric or plane strain body
shown. in Fig., 3 with thre_e planes of elastic symmetry
(orthotropic), and where the a,b coordinates are principal

material coordinates. For this case Eq. (1) reduces to

V4
/"
//
/ - - r~ - r~ - - -y
€aa 'é— = TE 0 - f_ﬂ “aa ‘a
a b ‘c =
e - .ab 1 0 . _ckt .
- bb 3 C E bb ‘b
a b c (2)
Y ¢ o . 0
ab . Ga'-.: ab
“ac - “be 0 1 .
€cc E_' !ib z cc ‘e
L 5 L 4 L J L i
Eg. (2) can be exprrssed mor~ hriefly as
£ = D - . .
Tab o Sab <ap T iy T (3)

from which the stresses are given by

fod = p-1 .
“ab T Rap (&ap - 1, 2T =g (e

- L (4)
\ab \‘ab -—T) . -

19
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The non-zero components nf the materiai stiffness Eab are

1 -\

c _ be “cb
11 Eb Ec 2
v + Vv Y + v Y]
c _ _ba ca 'bec _ _ab cb "ac
12 Eb EC ~ Ea c =
c. - _ca * “pa “eb _ “ac * Yab “be
14 Lb EC h Ea EC - (s)
. = L= Ve “ca
22 Ea EC .
c _ ’'cb * cab “ca _ “be T ’ba Yac
24 La EC N Ea Eb z.
1
c = —
31376,
c L= v ha
5 . ’
44 Ea Eb'
where
L = vib Yba ~ “be Yeb ~ Yeca “ac ~ Vab “be Yea ~ Vba Yeb Vac.
a = E, E, E,

If the material principal ccordinates a,b do nct coincide

with the alobal coordinates x,y but are inclined by the anale

>
as shown in Fig, 3, then the material stiffness Eab is
transformed to global coordinates by -
_ .7
Exy = L Sap & (6)

21



where

[ . 2. .
cosze sirn“: sinf ccs: G
. 2 .
- 51n25 cus”f -5in¢ cos¢ 0
Je
- 3 s o 3 [ 2 3 2-
~-2s8in* cost¢ 2sin? cose cos " F-sin“:s 0 (7
0 0 0 1
L | }
The strains o

in the glchal! caordinates X,y are transformed
to .the material coordinates a,b b7y

(8)
xy are transformed by
,{._ab - ?: ~a (9)
The transformation matrix Ea is
> 2 . ]
cos~? sin®: 2s5in? cos: 0
L2, 2. .
¢ = sin‘z cos“ ¢ -2sin¢ cose 9 (13)
N . . 2 .2
-51nf cos: Sine cosk COsS E-sin“§ 0
c 1]
L
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The difference between Egs. (7) and (10) .s due to the usage
here of the encineering shear-strain measure Y. The inverse

transformations are given by

—
1}
(ag
—
L

Sy T L Cap T L. Lab
(11)
-1 . )
S L. (=£) Lap

The elements of the material stiffness C,n and the thermal
expansion coefficients Lap are considered to be temperature

denendent.

MODIFICATION OF ELASTIC CONSTITUTIVE EQUATIONS TO MODEL
JOINT BEHAVIOR

In the last section stress-strain ‘2lations were presented
for an elastic orthof:opic body. “Zonsider now a jointed rock
mass with one or more families of parallel planes of weakness.
The stress-strain behavior at-a point is approximately
transversely isotropic, ard can therefore be derived from the
orthotropic equations, with major nonlinearities introduced for

displacements normal and parallel to the fracture surface.

During execution of static finite elemnent codes, calls are

mace to a material constitutive subroutine to obtain the

stresses. In general, the stresses g:y and strains g:y at the

23
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end of the nsﬂ load step are known, as are the current, or

n + 158 strain increments, dez;l . It is required to

calculate the stresses, g:;l. at the end of the lozd step unéer
consideration. If a predictor-corrector iteration procedure is
used within a load step to account for nonlinearities, thén

the current value of the tangent stiffness E;+l, is also
required. For the constitutive model presented here, the
elastic material stiffness given by Egs. (4) and (5) is
evaluated at each load step and then modified, depenéing upon
the joint behavior, to obtain the tangent stiffness. By

proceeding in this manner, the material stiffnesses need not be

stored in a working array.

If a joint is present at a finite element integration
point, then the stress~-strain behavior at this point is assumed
to be as shown in Fig. 4 . Consider a jointed surface
inclined'by the angle . with respect to the global x,y
coordinate axes. First, the incremental strains dg:;l are
transformed to the local joint coordinate system a,b by Eq. (8).
Likewise, the stresses EQY that prevail at the end of the
previous lcad step are transformed to the a, b coordinate
system using Eg. (9), and the elastic material stiffness gxy
is transformed using Eq. (5). An elastic incremental trial
éttess is then calculated using the equation,

S n+l
d‘gan = Qab déab ’ (12)
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and the updated total stress is found by adding this increment

to the previous value of the stress,

n+l _ n n+l . {13)
Lab Sab * dgab '

Joint behavior is sucn that tensile stresses cannot
develop on planes normal to the joint surface, yet joints have
full memory of any transverse displacem2nt occurring during
their excursions into the tensile zone and are able to transmit
comprecsive stresses in the normal direction upon subsequent
closure of the joint.

1 normal to the joint plane measures joint

The strain "'
e strain e b
opening and closing. This quantity is updated at each load

step using the formula,

n+l n

el = el + aen*t (14)

“bb

and the result is stored in a working array for subsequent

retrieval.

1f eg;l < 0 the joint is considered to be open, and
both the normal stress and the shear stress on the free surface

are set to zero in the updated stress array of Eq. (13),

n+l n+l
o = -
bb ?ab £ 0. (15



Modifications to the elastic material stiffness to obt:in

the tangent stiffness must reflect a zero normal stress and

thus produce a state of plane stress in the layer of material

bounding the joint. If the incremental stress-strain

relationship of Eq. (12) is written in the form

{ 5 n+l § ] n+l
aaw C11 C12 0 C14 (eaa
[+4
a bbs = %21 S22 0 Gy ®pb
. d 3
ab 0 0 Cyy O Oy )
[+
\ %cc/ Lc41 45 0 Cya  €cc
it follows that
n+l n+l n+l _
de : 0-
aspyl = Cyp de,, * Cpp dey T G Sec

Solving this equation for the ircremental normal strain,

o o
n+l 21 n+l 24 n+l
de = = == de - = de
bb sz aa C22 cc '

(16)

(17)

(18}
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and substituting this result into Egq. (14), yields the

stiffness with a vanishing normal stress,

%2 ‘a1 €12 Cas
¢ - v
11 <, : 22
0 0o o 0
Eab = _ ( 9,
0 0 Gy, 0
Cpy Cpy : C42 Cag
Cpp - —<— 0 0 Gy <
a1 c,, 22
L . i

To complete the description for an open joint, the additiconal

constraint equation
C33 =0 ' (20)

is required for a zero stiffness in shear. In practice no
diagonal element of the material stiffness matrix can be zero,
since this leads to singular equations. The technique employed
here is to multiply appropriate elements of the matrix by a

positive factor n where n <<1l. 1In this manner we obtain

!' > t] N
§ ...i"’f-;'.:
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™ ~ o) C C..
12 721 - 12 24
- n C 0 C
‘11 T 12 14 €22
cp,= |2 "G O " 24
~a (21)
0 0 n Cqy 0 )
Cyy C Ca2 C24
42 ©21
- c 0 c,, - ——=2
| Lc41 &, " Cyy 44 <,

for the final form of the tangent ctiffness at a joint. The
last step is to transform the stiffnes: .nd the updated stress
array back to global coordinates x,y.

If eg;l - 9 then the joint .s considered to be closed. The
stress strain equations in this case are élastic unless
frictional sliprpage occurs along the prescribed joint planes.
In this study, the onset of frictional slippage is dictated Ly
the two-dimensional Mohr—Coulomb failure surface shown in
Fig. 5. The linear form is defined by the cohesion Co' and
the friction coefficient ., both of which are obtained from

laboratory test data.

When the 3jcint is closed, the numerical procedure consists
.of -termining whether or not frictional slippage is taXing

place, and if so, to reduce the material stiffness for shear

deformation., The initial step is to make the transformaticas
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to local joint axes a,b and to obtain an elastic trial stress

in the same manner as previously described for the open joint.
If

< C 4+ n+l

+1
l a o ¥ "bb ' (22)

Tab

then slippage is not impending, and the elastic shear stiffness

is correct. However, if

_n+l

Al > o+ ousyy, (23)

Tah

then slippage has occurred. In the updated stress array -f

Egq. (13) we set

n+l _n+l
fCo * #hp - (24)

The tangent stiffness is taken to be

(€11 . 12 0 Cyq]
{25)
Chy G2 0 G
c =
<ab
0 0 " C33 0
| a1 Sz % Cas

1




where, as before, »n is a pusitive factor such tkat - -~ 1.
Finally, all arrays are transformed back to the global x,y

coordinate system.

1t can be seen that if two joint planes are prescribed at a’
finite e_ement integration point, then the above procedure is
simply repeated using the second joint angle. The factor x5 in
Egs. {21) arl (25) can significantly influence the calculated
results, and in some cases lead to undesirable results if not
properly assigned. A limited amount of information is
available on finite 2lement codes with similar constitutive
models [22, 24, 25, 26], and it shows that sufficiently
accurate results can be obtained if - is of the order 10_4 to
10'3. Values smaller than thic do nnt improve the accuracy

and may :~ad to numerical instability, while wvalues larger than

this rav not rewroduce the desired stresses at a joint.
STATISTICS OF JOINT ORIENTATION DATA

Geo{ogical field data on joint orientations can be
presented as points mapped onto a sterographic projection.
Although it is beyond the scope of this resort to present a
thorough description of the properties and techniques of
sterographic projections, a briof summary of basic construction

orincinles is presented here. More information can b2 found in




Stereographic projection is a methcd of marping the surface
of a sphere onto a plane. As illustrated in Fig. 6, the normal
direction to a joint plane is indicated by a point on the upper
hemisphere of a reference sphere. Any point on the surface of
the sphere is projected onto a diametral plane of the sphere
(the projection plane) by means of constructicn lines radiating
from a focus point, which is gernerally fixed at the lower pole
position on a line perpendicular to the proiection plane.
Nearly vertical fracture planes therefore map a - points close
to the perimeter of the projection plane, while horizontal
fracture planes map as points near the center of the projection

plane.

The present established method of describing joint
orientations based on field data is to (l) identify clusters or
groupings on the stereogrzaphic projection which compose a joint
set, (2) calculate the mean or average orientation of the
fractures within each cluster, and (3) calculate the
distribution of deviations from the mean within each cluster.
The field data are almost always plotted in an equal-area
stereonet which is amenable to statistical treatment. The
statistics employed to model the orientation field data are
based on the pioneering work of Arnold (27], Fisher [281,
Watson [(29], and others on the application of spherical

probability distributions to geologic observations. Early
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techniques for calculating preferrad direction and dispersion
consisted solely of visual selection fro:.. the stereographic
projection. Presently, with the aid of scientific computers, a
rigorous statistical treatment of orientation data is possible
which yields, in addition to the above, correlation among
multiple cluste~s, anisotropic distributions, and

goodness-of-fit estimates {30, 31].

Consider the orientation data for a single fracture set
which have been plotted on the equal-area stereonet in Fig. 7.
Contours of selected orientation densitites are usually drawn
to clarify and enhance the pattern. From Arnold [27] and
Fisher [28] the probabilit? that an observed orientation lies
within the solid angle ¢, measured from the mean orientation of
the pattern, is given by

__ktcose-1)

p(o) = v * (26)
l-e”

This is the hemispherical normal distribution function, and is
applied to circular clusters with a central value of high
concentration and which monotonically and isotropically
decrease to zeoro or a uniform background. It is rotationally
'symmetric about the central value. Since data on the
projection plane are plotted for only the upper hemisphere of
the reference sphere, the solid angle o takes on values

T
0< ® £ 2 . The value k describes the scatter of
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observations and is called the dispersion coefficient, or
dispersivity. If the data points are uniformly dispersed over
the projection plane, then k = 0 and the fracture plane
orientations are randomly distributed. 1If all data points plot
as a single point, then k = o0 and the fracture plares are
parallel. Thus, large values cf the dispersion coefficient
indicate small scatter. Mahtab, et. al, [26), and others show
that if the number of observations is large, and k> 6, thean Eq.

({26) can be written approximately

Ple) = l_ek(coso-l)' (27)
and which is shown plotted in Fig. B for various dispersion
coefficients. A dispersion cnefficient of 10 means that 50% of
the joint planes are expected to be crientated within 22° ‘of
the mean direction of the joint set. The standard deviation of

the probability function is k~1/2,

The technique for iniéializing fracture angles within the
context of a finite element computer code i3 straightforward.
Bbth the mean orientation o of the joint set to be modelled and
the dispersivity k are assumed to be known. For each finite
element integration point at which a fracture plane exists, a
random number is generated from a uniform distribution defined

over the interval (0, l1). This value is assigned to the

37



38

1.0

© 0.8
. & .

> ;

h N v

IR ¢ FOT : -
) i

< N

@ s

Qo :

[+ 4 !

o- 004 “ M

wi .

> :

< :

3 :

s 0.2 - 3

5 i

© !

O —— Y T

¢ , DeGREEs

Fic. 8 Tue HeMIsPHERICAL NORMAL DistrIBUTIO:, Civen By

P(p)=1-€expk(cos ¢ -1)]

Usep 1o MobeL Joint OrienTaTion F1eLD Data .



cummulative probability P (o). The deviation from the mean, o,
is then obtained from Eq. i27) with the appropriate dicpersion
coefficient. Because ¢ is actually a solid angle as shown in
Fig. 7, an additional step is necessary for two-dimensicnal
models. In this case, the solid angle ¢ is projected onto a
plane by a direction cosine having the angle pr , where p is
again a random nu.ber generated from a uniferm distribution
defined on the interval (0, 1). Finally, the local fracture

angle ° is given by

3 = a« + ocos{on} | (28)

It can be seen that the populzation of joint angles selected
in this manner will be dispersed according to the original
hemispﬁerical normal distribution. If two intersecting
fracture sets are to be modelled, the second angle is selected
in a similar manner but independent from the first angle, in
the sense that the fixed angle between the mean directions of

the two joint sets is not maintained locally.

NUMERICAL EXAMPLE: STRESS CONCENTRATION AT AN
UNDERGROUND OPENING

The two-dimensional model for a jointed rock mass was
programmed for the computer as a discrete, modular package

which wcild be compatible with several structural mechanics
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computer codes currently available. The package included both
the initializatiosn procedure to quantify the in-situ state of
the jointed rock mass to be analyzed, and the stress-strain
constitutive relationship. It was first implemented in the
ADINA code [26], out only after the program structure was
altered by Biffle (32] so that it would accept a constitutive
model in modular form. Two nrew plot programs were developed in
order to visually display the kinematics at the joint
surfaces. These are simple modifications of the -DMESH code
{33]. The first, called ANCLE-PLOT, plo‘~ the fracture
orientation at each finite element integration point. The
second, called SLIP-PLOT, plots the present state of the

fracture, i.e., whether open, closed, or closed and sliding.

The mechanical behavior of underground nuclear waste
repositories is modelled to assess the structural inteqgricy
of the underground rooms and the separating pillars during both
excavation ard subsequent thermal loading. 1In this example, we
consider the excavation problem alone, i.e., the disturbance of
the in-situ stress state due Eo the introduction of an
underground opening. A typical configuration for near field
"room-and-pillar” calculations is shown in Fig. 9, and a plane
strain finite element mesh of the region of interest is shown
in Fig. 10. For this example, the extraction ratio is 0.2, the

room width is 5m and the room height is 5m. Due to symmetry it
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is sufficient that the model extend horizontally from the room
centerline to the pillar centerline. The top and bottom
boundaries of the mesh are 100m above and below the drift floor,
respectively. The drift floor is taken to be 800m below the
surface of the earth, and we assume a lithostatic in-situ

stress. Given a material density »f

xa

. = 2100 X2, (29)

™~

the initial hcrizontal and vertical stress components arec
.= = = :ah, (30)

where g is the gravitational constant and h is the distance
below the surface of the earth. At the level of the drift
floor, a depth of 800m, the lithostatic stress is therefore

equal to 16.46 MPa.

For the first calculation the geologic medium was assumed
to be isotropic and elastic, having the following material

properties:

E = 20 GPa
s = 0.25 31)
G = B8 GPa
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A contour plot of the calculated vertical stress component is
shown in Fig. 11. 1t is evident from this plot that a large

stress concentration exists at the vertical wall of the drift.

For the second calculation, the medium was considared to be
highly fractured by two intersecting joint sets with average
orientation of 45° and 135° with respect to the horizontal.

This is shown in Fig..12. Each joint set was 2ssumed to have
perfectly parallel fracture planes (dispersion coefficient k=o0}.
Frictional slippane was governed by a linear Mohr-Coulomb

failure envelope defined by two parameters,

C0 =0 (32)

]
(=}
L]
=)

A contour plot of the vertical stress component after
excavation is shown in Fig. 13, 1In contrast to the previous
elastic calculation, the stress concentration has moved away
from the vertical wall of the drift by a distance approximately
equal to one-half the width of the drift. The reason for this
"halo" of concentrated compressive stresses surrounding the
érif+ is best illustrated by Fig, 14 in which the stress state
at a point on the vertical ---!1 of the drift is plotted on a
Mohr diagram. The horizontal stress component %; is zero and,
if the shear stress on the joint planes is to lie within the

orescribed failure envelope, then the vertical stress component
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Fie., 12 Contours OF THE VemrTicaAL STrRess For An
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can only be zero. Since the vertical component of stress is
zero at the wall of the drift, it must therefore be
concentrated somewhere removed from the drift for equilibrium
to be maintained. It is also clear from Fig. 14 that this
situation would not exist if either the cohesion Co were

finite, or if the joint sets were orientated such that

0<=:zl /\:tan u {33)

and

(ﬂ-tan-l;) < L

Locations where frictional slippage along joint planes has
occurred are shown in Fig. 15. All fractures were assumed to

be initially closed and none have opened due to excavation.

In the third and final calculation the joint orientations
were taken to be highly dispersed (k = 10), yet tae fractur-
spacing remained infinitesimal. The initial joint argles are
shown i'n Fig. 16, and tiie calculated vertical stresses are
shown in Fig. 17. Again, the stress concenc.ration is removed
from the drift wall. The stress gradients around the drift,
however, are much less severe because, due to the variable
joint orientations, the vertical stresses are not necessarily
zero at the wall of the drift. The results of this calculation

clearly differ from both those based on the elastic assumption
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and those based on the parallel plane assumption. Frictional
slippage along the first'joint set is shown in Fig. 18, and
that along the second joint set in Fig, 19. Several initially
closed fractures in the second joint set have opened due to
excavation. It must be remembered that, because of the
statistical nature of the lncal joint orientations, these
results are’not mathematically unique. Additional computer
calculations using the same onulation distribution for

soint argles would surely icla different results locally,
altivwugh the glohal responee may be the same. This .s caused

w7y the e iiaty in fielg reasurement data.
FUTJRE WORK

The constitutive equations presented in this paper are only
the first step toward modelling the behavior of a jointed rock
mass. As such, only the basiz mechanics qf joint slippage, and
the corresponding finite element implementation, were
emphasized. The future work is divided into twc parts:
extension of the mechanical rmodel, and coupling with thermal

and fluid flow models,

With regard to extensiocn of the mechanical mndel, it is
imperative that a consistent methodology be defined for
modelling variable joint spacing which is indeperdent of finite

element mesh size. An additinnal consideration in this effort
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is potential cross-correlation between joint orientation and
joint spacing. Also planned are investigations of
post-slippage dilatancy, shear lock-up due to corner
interactions, and crack initiation in the intact rock. In the
near future, increasingly detailed analyseé will be required,
particularly in the area of waste repository calculations, and
this will dictate a thtee-dimensional version of the jointed
tock model. It appears that joint planes in three-dimensions
can be readily prescribed and modelled by explicit modification
of the constitutive equations, but the computer run times for
these highly nonlinear problems is presently unknown. Present
run times on a CDC7600 computer “~r similar three-dimensional
problems with geological mater;als varies from 700 to 3000 seconds
per load step depending upon the degree of nonlinearity [34].
The run time for a three-dimensional version of the jointed
rock mode! is not expected to be any less. Since many load
steps are required tn trace the thermél history of a nuclear
waste repository, it is possible that future calculations may

be limited by present computers.

The model prrsented in this paper could serve in future
work as the basis for studying the interactions among
mechanical deformations, heat transfer, and fluid flow in a
fegularly jointed medium. The coupling mechanism is the
orientation and gap opening of the joint. In particular, the

vermeability tensor for fluid flow becomes anisotropic in thé
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vicinity of a fracture, and highiy dependent on gap opening for
flow parallel to the fracture. A similar statement can be made
with regard to the conductivity tensor for heat transfer. If
three-dimensional mechanical calculations are potentially

lim;ted by present computer capability, then three-dimensional

coupled calculations are surely limited.
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